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in April. There discussions with a number of people solidified some of
the details and focus of this years work. In particular, the work and
data involving spatially correlation noise in towed arrays was brought 1
to attention. This allowed practical values of parameters and clustered '

configurations to be considered.




ABSTRACT
OPTIMAL DELAY ESTIMATION IN A MULTIPLE
SENSOR ARRAY HAVING SPATIALLY CORRELATED NOISE ]

by
\ R. L. Kirlin and Lois A. Dewey 4
Electrical Engineering Department

University of Wyoming
VR

" The maximal likelihood (ML) estlmation of time-of-arrival differences

for signals from a single source or target arriving at M > 2 sensors has

been the subject of a large number of papers in recent fears. These time

differences or delays enable target location. Nearly all previous work has

assumed noises which are independent among all sensors. Herein noises are
taken to have complex correlation between sensors. A set of nonlinear
equations in the unknown delays is derived and possible simplifications
discussed. The unknowns are in one case the M-1 delays referred to the first
sensor and in another case an M-1 dimensional subset of independent delays from
the M(M-1)/2 pairwise delays. The Fisher information matrix (FIM) for the
estimates is also derived. The Cramer Rao Matrix Bound (CRMB), which is the
inverse of FIM, will show optimal estimator covariances; these are different
than the covariances of correlator delay estimators derived by Hahn [4,.
Computer evaluations are given for CRMB elements with varied SNR and noise

covariance values typical of turbulent boundary layer noise in towed arrays.
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OPTIMAL DELAY ESTIMATION IN A MULTIPLE
SENSOR ARRAY HAVING SPATIALLY CORRELATED NOISE+

I. Introduction

The estimation of time-of-arrival differences for signals from a
single source or target arriving at multiple sensors has been the subject
of a considerable number of papers in recent years. These time delay
differences, or simply delays, enable target localization through straight-
forward geometrical considerations when the signal path is non-dispersive
[1,2]. Although target location is the primary goal, delay estimation is
essentially equivalent as there is a one-one*, although nonlinear, relation
between the maximum-likelihood (ML) delay vector and ML location vector.

Essentially all of the results of available literature (except [9] have
been based not only upon the geometric and non-dispersive assumptions stated
above but also upon noise spectra which are independent among sensors. The
independent noise assumption is adequate if either the sensor self-noise is
dominant or the sensors are spatially separated sufficiently such that the
envirommental noise is indeed independent or uncorrelated among sensors.
However, this is not always a reasonable assumption and the effects of
spatially correlated noise in the estimation of delays and delay variances
must be considered. Thus appropriate analyses are herein undertaken to
consider correlated noise from diffuse sources. Results are compared to
those previously published for independent sensor noises.

Owsley and Fay [11] have considered correlated noise when clustering
sensors and optimizing beamformers. The comparable optimization of delay
estimation has not previously been approached. By choosing the correlation
parameter O, we may include the proportionality of correlated turbulent
boundary layer tow-noise and isotropic sensor noise.

The basic approach is to assume that complex Fourier coefficients Xi(k)
at the iEh sensor for the kEh frequency are available, having been obtained
from T-second time records, where T is long with respect to the signal

correlation time.

* For an array with three sensors in line there is an ambiguity in the
sign of bearing angle, which we assume may be solved with additional

information.

+ This study funded under office of Naval Research, contract number
N00014-82-K-0048.




The time data records are

xi(t) = s(t-di) + ni(t), i=1,2,...M, (1)
where di are the delays from the reference sensor to the iEE sensor

(d, = 0), s(t) is a zero-mean, Gaussian, stationary signal, and ni(t) is the

1

. Lt
additive Gaussian noise at the r—h sensor.

IT. Background

The problem of delay vector estimation for multiple sensors has been
studied with the above approach in original papers by Hahn and Tretter (3],

Hahn [4] and Schultheiss [5]. Closely following their presentations, let

1 T/2
Xi(k) == [ xi(t) exp{-jkwot}dt, k=1,2,...,K, 2

Tl

where w, = 2m/T. Define a vector X containing the above MK Fourier

coefficients as elements. If S(w) and Ni(w) are the signal and noise
spectra at the ig—1 sensor, the probability density for x can be written

K K
p(X) =X I det R(K) T exp[-Z X (MR (K)X*(K)] 3)
k=1 k:l

where

= T
X(k) = [Xl(k)’ Xz(k)a-"’axM(k)]

X = [X(1); XT(2),-—X (K)] T

V(k) = (1, exp(-jkuwd,),-—-,exp(-jku _d )1"

N(k) = [Nij(k)]’ an MxM matrix of noise
cross-power spectra

R(K) = N(k) + S(k) V*(K)V (k)

and where * superscript denotes complex conjugation.
In order to obtain the ML estimate of delays, determinant and inverse
theorems of use are

1 T

N lvwy (4)

svavl| = |N|(1 + sv

[R| = [N + svavT|

N[ |1 + N

PR P2, W - AR, P




and
R = nD - N vrwTN x4+ 1797 VIt (5)
Defining elements of N-1 as Nik, the likelihood function of the delay vector
T _ .
D" = (d2, d3,..., dM) is, using (4),
A=fnp® = (X - T ga[|N] @ + svIN LRy
B+
-7 I lxe - xIn vav T Ixe 6)
B+ T -1
VN "Vx + 1/8
where Z means sum over positive frequencies.
B+
Hahn and Tretter [3] have shown that, when N is diagonal, [Nl’NZ""NM]’
the Fisher information matrix for D (FIM = - <grad<grad %n A>> where <+> is
expected value) is
2 s? 1, -1 1T, -1
FIM = ] 2w [(ex N )N - N 11N ] 7
B+ 1+ ] s/N; P P P

where Np-1 is N-l with the first row and column removed. The Cramer-Rao

Matrix bound (CRMB) for the delays D is (FIM)-l. The ML estimate covariance
is known to asymptotically approach the CRMB. The ML estimate for small

delays (D is the error when D = 0) and independent noise is

D = -<C>'lBT, (8)
where

>t < FIM, (9

B =) jw S 1TN"1[xxp*T—x*xpT]Np'1, (10)

B+ 1+ ZS/Ni
and xp is X(k) with the first element (Xl(k)) removed.

Hahn and Tretter also show that the ML D estimate can be implemented

either as a beamformer (ideally in real time only when the N, are propor-

i
tional, because of phase-matching filter criteria), or as a cross correlator
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system which produces the M(M-1)/2 delay estimates. The correlator system

has cross-spectral filters

2 S/NiN.
|Fij = s 1,3 =1,2, ..., M, (11)
1+ % S/Ny i#3.

The error covariance matrix for the pair-wise delay estimates of the cor-

relators is shown by Hahn [4] to have elements

2 4
~ o j WPIE YN N, + Sn, + N ]dw
var <dij) T B ij i i j (12)
2 2 2
(JBw lFij} Sdw)
covar(dij, dkl) =0, i, j, k, £ all distinct
2 2 2
~ - 2T j w {F,, F, SN,dw
covar(dij,diz) =T B | 1JI ! 1Q| i , 1 # 2 (13)

2 2 2
JB w lFijl Sdw JB w |Finde

~ covar (dij’ d > J#L

21
It is emphasized that these are correlator error covariances of the Sij
and not ML estimator error variances, which are derived herein.

The delays having covariance matrix defined by (12) and (13) are not
the M-1 delays referred to a single sensor. Hahn and Tretter have shown how
to use weighted linear combinations of the M(M-1)/2 cross correlation delay
estimates, Sij, to form an estimate for D = (di) which achieves the CRMB of
(7).

With independent noises maximization of A in (6) over the vector D
concentrates on the second term in the second summation, because other terms
are not dependent on the di' This is not generally the case, and an analytical
solution is not available, as was pointed out in the multipath analysis
given by Owsley [6]. However, the generation of a set of nonlinear equations

in the unknowns di may be obtained.

3

In the next section ML estimator equations for the M(M-1)/2 pairwise

delays are derived. Section IV produces the CRMB for these delays. Section
V considers the M-1 delays di - dl’ and Section VI derives the CRMB for the
M-1 delays d

1 "9
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I11. Estimation of an Independent Subset of M(M-1)/2 Delays

This section will determine equations for ML estimates of an independent

subset of the M(M-1)/2 delays di -d =d, . 1In contrast most other papers

k ik
referenced find ML estimates of either the M-1 delays (di - dl), 2<1i<M, or

other parameters such as range and bearing, functions of which the di may be

written. The reason for our choosing the dik is that a-priori information

about linear relationships among them may subsequently be used as in {10]

to improve the delay estimates di - dl or any other subset.

Because we will find equations for real variables and real unknowns,
and we wish to be able to show effects of correlated noise on various parts

of the formulations, double sums throughout the paper are usually broken into

several pieces.

Now consider the two summations in (6), the only functions of D,

A== enf1+s TP 45T T wPeTIOW, T dody gy

B+ P P afp
1rNtk Jw(d - d )

ik N
DI Y JNPP 4T T nPhe Jw<d SRR G o
P

B+ i
S
P qfp
Thus we would like to solve for the d,k which maximizes

A = -z tn (1/s + § ] nP9e7%g)

P q
* z z Nmr Ntn erdrt_. ; 15
rt 1/s+ ) ) nP9e™%%q

P q
T.-1 T ~1
* *
XN VgV N X i (16)

+1 Llxx
B+ mn

=7 [-tn(g) +
B+

where, using (15),
=1/ + VN lve = 1/s + TNPP + 2 7 T (cos wd bq Re{NP%}
P P 9°p
+ sin wd__ I {NPY}) Qan
pq m

Differentiating A'' with respect to dik (assuming all dik independent) gives

T -1

ApT (VN “vx)
- L 3y
B+
ik 2
ng a(v*v INT x* - XN tuwy Ty lx* a(v N 1V*) (18)
3d, ad

+ 2

——

Gin At i

R <N

;
|

T T
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Setting this equal to zero and rearranging gives
: T o{-aev'nlvw) 111 {awsvD) -1 vy . oIy lus (8lk*)=0 (19)
: B+ 94 g &x 3 d s T2 3 d
| ik & ik g g ik

: The square-bracketed terms in (19) are a matrix U(i,k) = (umn(i,k)) A typical
element “mn has values which differ according to whether or not (m,n) =

(i,k) or (k,i). Using

T jwd
* =
(V*y )m,n e” mns, (2
jwe ik, (@,n) = (1,K)

s jwe M, (mun) = (k1) (20b)

od 0 ., (m,m) # (1,k),(k,1)
and

VN Tyx ik-~jwd ki +jwd

g, = N o (et ™k + N e ™ k)
1 3 d
ik
4 ik, . ik
=2c(-Re (N "}sin wd,, + Im{N*“}cos wd.,) (20c)
ik ik
in umn(i,k) give
VS
/ erdik (jw - gl/g) ’(m’n)::(i:k)
w = e 14k (-ju - g,/8) , (m,n)=(k, 1) (21)
mn g
bjwdmn gl/g ’(m)n)#(i’k)a (kyi)

Insertion of (21) into (19) constitutes M(M-1)/2 equations, nonlinear, to be

solved for the d This is pursued further in Appendix A for diffuse noise.

ik’

Note that only M-1 delays can be independent. We now turn our attention
to the CRMB.

= S, Y

1




IV. The Cramer-Rao Bound for an Independent Subset of the M(M-1)/2 Delay

Estimates of dik

As is well known, maximum likelihood estimators have variances which
approach the Cramer-Rao bound. The variance bounds for the d,, are the

ik
elements in the diagonal of

CRMB = (FIM)_l = (-<grad(grad fin A")T>)_l, (22)

wherein FIM is the Fisher Information Matrix, grad A'' is a row vector
th

whose m— element is the derivative of A'' with respect to the mEh delay

(the mEE dik here), A'' is the expression in Eq. (17), and <<> denotes

expectation. The outer gradient operator creates a matrix whose elements

Al!
are 83 ( . We have already found the inner partial -- the result

rt
is Eq. (19) and following. For any M-1 independent delays the following applies.

Taking and negating the second partial with respect to drt gives

d A" a aVT’\I—lv* B(VT\]—lv:'c 5evT 1.
- —— (_— ) = - 2 {_[g ( L ) _ i ) (\ N \")
ad d 3 ]
rt 3 ik B+ drt adik adik 8drt
)
g
1 -l 9 avevt 11 avsvD)  c1 o oDyl
t o g XN g S, )NX XN LR
g rt ik rt
_ _ 3 T -1
- XN Ly Ty xs QYN v*
ad ad,
rt ik
_ a(vTN”lv*) g1 B ) NLys
ad Sa L N
ik rt
- _ T -1, . T -1 §.
+ 14[(XTN Lyay Ty Ixx SCVUN vn))+2g 3(V'N V9,
. od
- g ik _rt
=y Lo % g8 . 32wy 8 v’y i
2 - == e AV ) e VPV ) .
B+ e WL, T gy |
|
it
O T 1 sy | 2 .
o2 1 T o1 3(vxv) 2 T] -1
gadrt VY g gl ad + 2 glgzv*v }N X*}
rt g

B+ B = (23)

1 :




where
- _0 - ik, . ik
8 safz 2w(-RelN }smwdik + Im{N }coswdik) (24)
- %8 _ Tty . rt .
g, g 2w(-Re{N }sn\wdrt + Im{N }COswdrt) (25)
_/ . .
and B ='b \15 found using
\\mn. ,
td /I
0, (r,t) # (i,k)
2
-__98 _
812 ~ 3d__ad, (26)
rt ik

\\?wz(—ke{Nik}coswdik - Im{Nik}sinwdik),(r,t)=(i,k)

//0,(r,t) # (i,k)

-l ngdik, (m,n) = (k,i)/< , (r,t)=(i,k)
0 , (myn) # (k,i),:
(i,k) (27)
Then b has the following values:
(m,n) = (i,k), (k,i)
g 8 8.8
= "B ju - 2 A2 21 1°2, jud
bik ( 22 jw plw™ + g +g _]w)+2 )e ik (28a)
& 8
= *
Pri = Pk

where u = 0 if ¢r,)#(i,k},u = 1 if (r,t) = (i,k)

(m,n) = (r,t), (t,r) ; (r,t)#(i,k)

- & . 2g.g
b = 1l jw + 1
e T (21 -———53 ) (28b)
g
g
= *
btr brt

(m,n) # (i,k), (k,i), (r,t), (t,r)

=2 88 wd
bun =" 12 812 yed%mn (28c)
g 3

b =b *
nm mn

ot e S RV

LT s W




Using
~jud *
<X X *> = Se i re + N, >t #t (29)
rt 3
S + Nl , T =t
and writing
T.-1 -1 2, mm 2
X'N"" BN x* = bmm[lxml N
m
+ 2 Re{memm Y X *N"G}
gfm 1
+7 7 xx s
pfm qgfm P 1
+11
L IRe{bmn} Re{G(m,n)}
- Im{b__} Im{G(m,n)} ] (30)
mn
where
G(m,n) = J X NP 7 x #y9" (31)
p P q 1

The elements of the FIM are
-y 1 -
B+
1 mm, 2
-7 =1 [(stn) ™)
B+ 8 g ™ 1

* q
+ 2 q;m((Scoswqu + Re{qu}) Re{N""N"9}

~(-Ssinwd _ + Im{N' })Im{N™N"9})
mq mq
*
+ 2 z 2 ((Scoswd  + Re{N }) Re{NP™N"9}
pfm q>p pd pd

, * pm, mq
-(-S wd + Im{N ImiN" N
(-Ssin pq m{ pq}) m{ H

pm; 2 *
+ [N (Scosw dp ¥ Re{Npm})]

)
p#m

+27) ) [Relb_} < Re{G(m,n)}>
m n>m mn

- Im{bmn} < Im{G(m,n)} >]} (32)
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where

<Re{G(m,n)}> = J T (Re{NP"N"} (5 coswd  + Re{N* })
P q P4 Pq

~Im{NP™"N"Y) (s si *
m{NFN T} (-8 31nwdpq + Im{Npq})) (33)

and

< m{G(m,n)}> = T 7 (Re{NP"N"}(-Ssinwd + Im{N* })
P q pq Pq

+ Im{Npmqu}(S coswd + Re{N* 13))
Pq Pq

Use of these elements in the FIM is restricted for inversion to the

CRMB to M-1 independent delays. Further examination of (32) for diffuse

noise is given in Appendix C.

Y% TSN

N

T
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We now investigate for the M-1 di changes in these earlier results

caused by consideration of noise which is spatially correlated.

| A
V. Maximum Likelihood Estimation

M- -
of the M-1 Delays di d1 |4

We again maximize A by maximizing
A= -7 g+ ] xWnlusvInlxesg (34)
B+ B+ ii
b
Writing I‘
-1 !
x N i\

pl p2 pm .
= X cees
(XN, T XN XN (35) ,

Tt

th
and the m,m— element

e -

(Vv Ty =v = e W) i
m,n mn i
gives h
x N Ly Ty txesg = 2 T v L(Ix NPT Tx andT g
ma " p q w
* i
=Ly Ve N 4T x Npm) X ™"+ 7 xq 89 :
g mn - m {
mn p#m q#n .
=177 v x4 x N T x x@" @
g p mnomn 4n 9 |
q#n
+x % NP Y ox NPT
n P

p#m :
1
+7 7 xx x NN, (36) ’
pfm q#n © 9 |

In this form it may be seen that (34) differs from the spatially uncorrelated

noise case only in the —X &n g term and the terms in parentheses in (36)
B+

i

other than Xan* NN, 1f p =0, &n g is not a function of the delays ‘

{

and all Npq, p # q, are zero. Then as the literature cited shows [3,4], !

maximization of (6) reduces to either a beamformer (choosing M-1 di) or a 1

system of M(M-1)/2 correlators (choosing di-dk). \
Further manipulation of Eq. (36) when noise is diffuse is given in

App. A for a special "worst case" when all correlations are real and

equal. '




Maximizing A means solving for d

{l T ~1 B(V*V )

YRV N X%

20 ] (Re{N p}31nw(d -d)) + Inlx plcosw(di-dp))

in (37) gives

(Re{Nip}sinw(di-dp) + Im{Nip}cosw(di—dp))

/g); myn # i or m
Jw(d dn),

0 |

(Jw - g;/8) e m=i,n#i

—Jw(di—dm);

(-j()) - gi/g) €

(37)

(38)

(39)

(40)

(41)

-

et akiten
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Now note that
-1 -1
N Tantxx = T 7 a (1) (x x #™N
mn mn
mna
+ X N Y x o NI x N T x NPT
qfn 9 pfm P
+7 7 x x % NPTy (42)
p#m q#m

Ignoring the first summation in (40) (from the in g term of A) and setting
(42) equal to zero for i = 2,3,...,M constitutes M-1 nonlinear equations

in the M-1 unknowns d dm d, = 0).

2 d3, oo 1
Equations (42) may be made real by observing that every (m,n) term has

its conjugate. Thus

K lanixx = T a () (% 12a™? + 2 Re{x N™ x *N™1}
g mm m m 4
+ 5 7 x x x 8PN
pfm q#m
+2) ) (Rela (i)}Re{G(m,n)}
m n>m mn
—Im{amn(i)}lm{c(m,n)}) 43)
where
G(m,n) = § x_ NP™ ) x #§"9, (44)
p P q 4

Because the amn(i) are functions of 8y and g, and g and g are functions of
all delay differences dp-dq, the solution for di cannot be found in terms
of Xi and X1 alone nor even as a linear combination of the Xqu* er(dP—dq)

correlators.

VI. The Cramer-Rao Matrix Bound for the M-1 Delays di—dl.
It is well known that ML estimators approach the Cramer-Rao bound
(CRMB). The variance bounds for the delay estimates di are the diagonal

elements in

CRMB = (FIM)'_1 = (-< grad (grad A')T>)-1, (45)

A A A A BRLASE e -

e
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= = g

wherein FIM is the Fisher Information Matrix, grad A' is a row vector whose

w1 1
A' is the expression in (16), and <+> denotes expectation. The outer gradient 1

mE-tl element is the derivative of A' with respect to the mg’l delay d

operator creates a matrix whose elements are - %E—(%g_)' The inner partial j
k i
has already been given by (37) and (40). Continuing we find with s . &, y
Bdk 4
that
S @by oy L %81 BB
8dk 3di B+ g adk
+ XL 22w’y Bk aqumT)
Bdkadi g adi
1 %8 ow? _ 1 g, aqvrvh)
g UV g YTha
& % k
2 T, -1
£ * *
+ 75 8,8, VAVIIN TX*} (46)
g
If k # i, then
L 202 (Re{N'*} cos w(d,~d ) +In{N'*} sin w(d,~d ))  (47a)
ik 3d_ € ¢ i% sin W T%
and ) 0, (mym) # (k1) or (1,k)
3% rrvh) ) 2 f(d. -3
G = jw(d, -d, - ;
adkadi m,n w e k "i’, (m,n) (k,1) (47b)
wreT30M~d ) oy = (d,k)
These give
-3 ,oA' 1
= G =1 =g, - g8/el
udk Bdi B+ 8 ik i~k
-1 kO Ton ke (48)
B+ &
where U have the following values
m# i,k; n# 1,k
-8 2g.8
_ ik %k o jw(d -d)
Yin ( 2 + 3 ) e m n (49a)

g
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(m,n) = (k,i) or (i,k)

8 2g.8 8 g _
=@l - e EE gk - ) J0ledy)
ki g g g

f u (49b)

= *
Yik  Yki

k; n# i,k or n = k; m # i,k

8
[

8 2g.8 8. . _
(- 2k 4 L1k CE gy GJutdmd) (49¢)
kn g g2 g

u

= *
Ynk Yim

m=i;n#i, korn=3i; m# i,k

-8, 2g.8 g . _
ik + ik _ _gl(_ jw) er(di dn)

(=4
]
~~

(49d)

CTByp | 2838y
m~ g T2
g

Now the (FIM) may be written ( i # k)

) (49e)

[
I

1
(FIM), = g+ S legy ~ 858, /8]
1 2, .mm.2
g<§+ tg U (1% |79
+2 Re{Xx N'" 7 x *N"%}
m o#n q

+7 1 xx * PN
pfm gqfm

+2 g ngm (Re{umn} Re{G(m,n)}
—Im{umn}Im{G(m,n)})]> (50)
where G(m,n) = J X N ¥ Xq*qu as in (44).

s Pp q

|
i
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Writing all prq* as in (29 ) gives ,
i
. 1
~jw(d -d )+ N , p#tq z
<X X %> = (5€ P-4 pa (51) !
P q S+N,pP=4q |
i
<Re{G(m,n)}> = § } (Re {NP"N"} (S cosw(d -d ) + Re{N' } §
P a Pq ‘
P q ;
] ~Im{NPN"YY (s sino(d -d ) + Im{N:;})) (52)
i <m{G(m,n)}> =] J (Re{NpmquJ(—s sinw(d ~d ) + m{N* 1)
i
K pm_nq L ;
: + Im{N""N S d -d ) + Re{N } 53
5 m{ ¢ cosw(p q) ety )) (53)
X and
75 PNk X %>
pfm q#m P A
1 = 2] 1 [Re{N"'N"}(s cosu(d -d ) + RefN D)
' pfm ¢>p, # m !
—Im{Npmqu} (-S sinw(d -d ) + Im{ﬂi H
P q Pq
0
+ 3 (NPT s+ N (54)
p#m
giving
Fmo,. =T 1., - a8 /8)
ik g ik ik
B+
1 ; mm, 2 5
=Y (T u [ |
| EBgt m ™ 1 1
) J
+ 2 z (Re{Nmmqu}(S cosw(d ~d ) + Re{N* } ‘
q#m moq mq ﬁ
_ mm mq _ . d -d + 1 %
] Im{N N 1} (-S sinuw( m q) Im{hmq})) w
{

+27 T (Re{NP™"™} (5 cosw(d ~d ) + Re{N })
ofn q>pr#m P q Pq

~Im{NP™N™9} (-5 sinw(d ~d ) + Im{N* }))
m q mq

£5I"2 s
p#m 1]

+ 2 E nzm [Re{umn} < Re{G(m,n)}>

—Im{umn} < Im{GC(m,n)} >]} (55




For the diagonals of the FIM, let

k = i, then

J8. .
— =g, . = -202 ) (Re{N"P}cosw(d -d )
ad ii . 1 p
k=i pFi
- ip ; -
Im{N"F} sinw(d, dp))
and
er(dl_di)
jw(d.=d.)
2 T -0- e 2 i’7 -0-
*
CHUA R
adi .
. _ jw(d,—d,) . jw
edw(dy=dy) e 2T g L dg=d))
-0~ QJ0(d =) "0
These give

2,, _

-3°A s = y 1 {[g.. - g.z/g] - xIy Ll i)
adi B+ 8 11 1

where L. have the following values.

m#i, n#i, m#n

W =(-gii/g) ejw(dm-dn) + Z(giz/gz) ejw(dm—dn)

m=1i, n# ior n=i,mfi

2 2,2 . jw(d,.~d )
win = (w g;;/8 + 28,7 /8 - 2(g;/8)jw) e i n

w_=w,*
mn in

2,2
W o gii/g +2g; /g

Using the above results gives

(FIM) = ] é (85 - 8,°/8)
B+
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LY 0T v sy (™2
g §+ n o 1
+ 28™ T ((S cosw(d -d ) + Re{N" })Re!N"% |
ofm m q mq
-(-6 sinw(d ~d ) + Im N hy m{n"4))
m q mq j
+2) 7 (S cosw(d -d ) + Re{N’;q}) Re{ NPTN"9} ”
pfm ¢>p#n P :
(=S sinuld - R (P, Mq T
(~S sin (dp dq) + Im{.\pq,,) Im{N" N '})
+7 N (s 4 Nl)]
p#m
+27) 7 [Relw_} < Re{G(m,m)} >
m n>m mn
—Im{wmn} < Im {G(m,n)} >} (60)

To compare with previous results observe in (55) and (60) that if noise.

+3 -
is spatially uncorrelated, g = 0, and only Ui T UQE = w2 e—Jm(di dk) and
" +3 -
LA = wéi = —wz e Jw(di dn) are non~zero. Further, in (52) and (53) p = m

and q = n are the only non-~zero terms. Utilizing the above,

2 .
W 11
(FIM) K- -2 123+ z (cosw(di dk) NN

kk
S cosw(di-dk)

. ii_kk .
+ 31nw(di—dk) NN S 51nw(di—dk))

2 ..
o) W yiiykkg
B+ &
ii

where g = < + Z NTT,
i

wl—

and similarly

L T wz ii nn
{ (FIM),, = 22 ;! — NN S.
i1 B+ n#i

——

It is readily seen that this FIM is identical to Eq. 7 (the same as Eq. 12
in [3]).
Unfortunately the FIM defined by (55) and (60) has elements which are

in general functions of the delays themselves, making analysis difficult.

T T T ——

However, in the next section we will assume a signal source at infinity,

allowing some simplification.
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VII. Evaluation of the CRMB

It is unreasonable to evaluate and invert the FIM in sections IV or

VI in general because it is a function of all di' However, if wavefront

curvature is ignored, each delay may be written di = iA where A is the

delay between adjacent sensors. We may also let A vary between zero and

for a single frequency. Then dp - dq = (p-q)A for example. This
is the beam former case.

wh =7

Because of the generality of the formulas we may also vary the elements
of N, using the symmetric matrix (as in [11])

N

1 Py Py eee Pp g \\

N = le 1 pl e pm_2 \ ‘J
( - 1]
\ '
: 1 ... . i 3
\ . '3
AN 1/' §
. -r0 a3 . . .
wherein pr =0, € e . Such a correlation is appropriate for turbulent

boundary layer noises and its magnitude with respect to the unity diagonal

accounts for isotropic noise. In the following simulations we choose !Cl'

0, 0.2, 0.4 and wB having values 0 through w/2.

Figures 1-24 show the CRMB (1,1) element, center element, or last b
element as a function of the various parameters. Table I is presented as
a guide to comparisons.

The formulas for the FIM may be applied to arrays with clustered
; elements as well, if the spacing between clusters is considered. We have

done this in producing the data in Figures 25 through 30. Zero correlation

between clusters is assumed.

The clustered (or grouped) arrays studied are as shown here.

. . . -« 3 sensors
e e . « e . . e e « 9 sensors
e e e s s e e s e e e e e e + 15 sensors

The spacing between array ends and ends-to-center remains fixed. The
effect of adding sensors to the cluster when spatially correlated noise

is present can then be observed.

; Comments derived from the Figures are as follows '

P~ g

it 4 <
“y
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Figures 1 through 9 show that variance decreases monotonically
with SNR and that variations in p from 0 through 0.4 [45° have

unpredictable, but not large effects.

Figures 1 and 7 for example show that more sensors (from 3 to

15) will reduce the variance of a delay.

Figures 1,2 or 3,4 or 5,6 or 7,8,9 show that variance bounds for
delays end-to-center will vary with p differently than those for
end-to-end, but not a lot. Also the end-to-end delays varv

least.

Comparing Figs. 1 and 3 for example shows that the effect of o

on a delay estimator will vary with wA ( look angle.) This variance

is easier to see in Figures 10-24.

Figures 10-24 demcnstrate that the bounds are effected by look
angle to a much larger extent when 0 is increased to 0.4. As much

as 5dB (Figs. 11,17) is observed at SNR = 0.1.

Comparing Figures in 10-24 with like SNR and M shows that different
delays are effected quite differently as wA varies; i.e. CRMB(1,1l),

(2,2), (7,7) or (14,14) all vary differently with p and wA.

Grouping sensors when spatial noise correlation is present has

a detrimental effect at low SNR. This may be seen in Figures

25, 26, which also show that the midpoint and end delay variances
are equal at wA = 0. (They are not equal at other wA per comment
4 above). The difference between curves A and B is that the 9 x 9
noise covariance matrix for curve B has 3 x 3 blocks on the
diagonal while curve A's noise matrix is full. Thus curve A
represents a cluster of nine sensors while curve B assumes each
cluster of 3 has noise independent from the other clusters. For

p = 0.2 and wA = 0 the effect is 0.3 dB at SNR = 0.1.

Pursuing the question of how much clustering is effective when
spatial noise is present, Figures 27 through 30 plet the variance
bounds vs sensor number M while holding array length constant.

We conclude that delay variances are reduced much less for M

changing from 9 to 15 than for M changing from 3 to 9.
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The last comment is meant to be one of the basic conclusions of this

study: that for significant spatially correlated noise, there is a point

beyond which it does not pay to increase sensor number in a cluster when

the purpose is to reduce delay variance between clusters.

Py
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Figure 17. CRMB(7,7) vs wA. M=15. A--p=0.0, B--p=0.2;
C--p=0.4.SNR=0.1
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Figure 18. CRMB(14,14) vs wA. M=15. A--p=0.0, B--p=0.2;
C--p=0.4.SNR=0.1
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Figure 20. CRMB(7,7) vs wA. M=15. A--0=0.0, B--p=0.2;
C--p=0.4.SNR=1.0
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Figure 29. CRMB(M-1,M-1) vs M. p=0.2. A--SNR=0.1, B--SNR=1.0,

€C--SNR=10.0. M sensors have constant array length;
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C--p=0.4. M sensors have constant array length;
clusters of 1, 3, and 5 elements at center and ends
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No noise correlation between clusters.
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VIII. Conclusions

Although a closed-form solution for the ML estimate of the dik has not
been obtained, nonlinear equations which theoretically may be solved are
derived. These show considerable complexity which might be somewhat
reduced under rather confining conditions. No simple hardware analogy is

apparent.

The fact that the ML estimators of the dik are functions of all the
other delays may be a positive observation, that is, no one delay is estimated
without consideration of the others. However, it has been shown (at least
for uncorrelated noises) by Schultheiss [5] that M-1 delays are sufficient
in practicality except when all sensors have small SNR. In fact the CRMB
may not be found from (FIM)-l using the formulas given herein unless an
independent set of dik is used.

The variances computed for the delays di show considerable - several

dB - deviation as p varies and as M varies. The effect is greater at some
look angles than others, and also depends on which delay is considered.

For sufficient spatially correlated noise, clustering sensors is not

efficient beyond a certain number. Here we show 6 to 9 sensors is a

reasonable number.
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Appendix A. Evaluation of the M(M-1)/2

Delay Equations for Dispersive Noise

Cron and Sherman [7] have found spatial correlation factors as a
function of sensor separation distance and wavelength for diffuse surface
noise and for diffuse volume noise. If distances between all sensors
considered are small with respect to half-wavelength, the correlations are
all essentially a constant. Although long arrays span much more than half
a wavelength, a constant correlation is useful when some of the sensors are
clustered. At half wavelength the correlation is zero for volume noise,
but the zero location varies with other geometrical parameters for surface
noise. Both Cron and Sherman [7] and Piersol [8] have suggested exploiting
the correlation zero distances to improve delay estimation; the implication
being that the less correlation the better. Thus it is reasonable to assume
a worst case in which noise at any two sensors has a maximum correlation
p = p(k). Due to the symmetry of the diffuse noise source, there is no
time delay associated with the correlation; i.e., all noise cross spectra

are real. Thus let the cross spectral matrix for diffuse noise be

l .
N=N i
1 1 (AD)
1
1

For this N, use of the theorem

- T
(L + rcT) 1. I --——~lﬁf~ re
l1+rec

gives

N-l - (NPQ)
where

g = nit o1 1+ (M-2)p (A2a)

N, (1-p) 1+ M-1)o

- yPq _ 1 -p .
=N Nl(l-p) (1 + (M—l)p> » P #aq. (A2b)
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A2

Eq. (19) may be written

YL - g, /g + I lontxx} = 0. (A3)

B+

where the elements umn are given in Eq. (21), and gl is in (20c).

A simplification may be obtained by observing the relative magnitude of

syTy lyx = 57§ NP9 395

P4
(A4)

sl + 27 7 NPYcoswd ).
P 9P Pq

Substituting (A2) into (A4) gives

To~lo. _ s _
SVN TV* = N (T-5) (FG-D) ) [M(1+M-2)p)

-20) 3 coswdpq] (A5)
P QP
Since there are M(M-1)/2 terms in the double sum and !cosB| < 1,
% <MS/N o gy Tlyn < MS/Ny

< (1+2(M-3/0)% - To/M)  (86)
1 T#F@-Do 1-p) I+ (1) p)

Thus under the very tolerable conditions that MS/(N1(1+(M—1)Q)>>1 or

p<<(%§ - 1)/(M-1), we note that in (21)
1

ik . _
25N wsinud, ’ | 7wp sinedyy /(1S . (A7)
= < Z +(M- TN, (1+(M-1
145y TN Lus N, (1-0) (1+(M-1)p) N, (1+(M-1)0)
= 2wpsinwdik/(M(l-D))
Using (A7) in (21) gives
wed®i (s - 2051090y - (myn) =(i,k)
- m(1l-p)

oo =t weT Iy oy - 2Psindyy D (myn) = (k1) (A8)
mno 8 m(1-p)

-2pwejwdmn sinwdik

s ’ i k), (k,1i
) (myn) # (4,k), (k,1)

Py




The following steps will lead to an equation, nonlinear, for di

k

in terms of the other delays and having only real quantities. Thus the dik

terms are separated from others in the summations. The set of M(M-1)/2
equations could theoretically be solved for any M-1 independent unknowns
dik' Further, assumptions about large M, small p, or small di lead to

k
simplifications and linearizations, but these are not pursued here.

Using the approximations (A8) in (A3) gives

7oL owveined,, + Xt uv kD)
g ik
B+
=7 & 208 Msinwd,
B+ &
~2owsinwd, ) x X *PTnt%ei% g
— 1% P g
M(1-9) poa  (F,0) # (1), (1,K
2psinwd., . .
T T G- —— 1y x x o« wPINRI
| M(1-p) P4
3 Boms ) X X ¥ NP e 19ix) = 0 *9)

Grouping index pairs (p,q) according to matches with either m or n or

both in eijwdmn and using o and B for the N“1 elements gives (see Appendix B)

] 1 (28" sinud,
B+ g
-2pwsined, §ras(x | 3+x 1%
M(1-0) (ryt)#(j-’k)’(k,i)

2 *
+20° Y ) X Xq ) coswd
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2 2¢ X % Txx*+a?) xX*
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pv pr p' pt
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+ (@K X *+ B XX *+a X' R L X,
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-0 240y upclx [ Hx | + 207 T T % x %) cosud,
M(1-p) p' q'
- w(20B(]X, ] + lxk} + 20° ) Z X xq*) sinwd,

p'q’

2psinwd, Q[B XX %+a2X X% + a ¥

ik

2 ¢
+ w(j- X.X * + o X *
iq thkq

M(T-5) tle Tk q’
+a? J X X%+ aB ) X X *]erd
p' p1 p'
+ w(-j- zpsmwdlk[a XX*+BXh*+a22x,x*\+a8X X X %
M(1-0) k i gt g Ka
+ a8 ] XX+ o? 5' XpXk*]e_j‘”dik} =0 (A10)

p' P

where p' and q' indicate omission in their sequences of r and t for the

jud Juwd

e’ rt terms or i and k for the e’ ik terms.

4
Noting that the coefficients of e"qunn are complex conjugates, we may
write, using

(a + jb) (cosB+jsind)

(a - jb) (cosB-jsinb)

a cos® - bsinf + j(b cosf+asind)

a cos® - bsinb - j(b cosB+a sinB)

1
B+ 8 {2w sinwd,

-prsinwd. l | I ‘
S upca(|x_| %z 1%
M- (£, 0)F, k), (k1)

t2r

+ a Z Z X X *) coswd
p' q* P4

rt

+ ((u2+B JRe{X X *} + (a8+a2) J Re{X X * + X*X_} coswd
rt ' rp tp

2 2 2
- ((B%-a")1 {X X *} + (aB-o )g' Im{XrXp* + Xt*Xp}sinwdrt]
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+ ((Bz—az)lm{xixk*} + (aB—az)Z Im{XiXp* + XpXk*})coswdik
pl

_ (2psinwdigk 2 9 . 2. .
e -~ X %} + -0 * X *P)si
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2 2 2
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((@” + BTRe {X,X *} + (aB+a’) g' Re{xixp X X Dsinuwd,
+ (2031nwd
M(1-p) P
where U =1 if r = t, 4 = 2 otherwise.
Note that all elements in Eq. (All) are real because for example
J 7 xx#*=7 Ix |2 +2 ) Re{X X *}
P’ q P dq p?‘i,k p'q'>p’ P 9q
First simplifications of (All) may be obtained by observing 3>>’a[ when
1+ (M—2)o>>!o], which is often true. The Zwusinwdik term is negligible

2
with respect to any of the §° or fo terms, particularly at large SNR. Alsc

at large SNR, terms such as Re{XrXp*} are approximately equal to S cosmdrp,
and terms such as Im{XrXp*} are approximately Ssinwdrp. 1f 20/ (M(1-p))<<1,
many terms drop out.

If the double sum over r,t could be omitted, and if wdi <<1l, the

k
equation could be linearized, but this is not generally feasible. There
are M(M-1)/2 terms in the double sum, each of comparable magnitude to the
d., terms, and the double sum is multiplied by 2pw sinwdik/(M(l-p)). So

ik
roughly to drop out the double sum over r, t, we require !S%:ll . 20 sxnwdik<<1
M(1-p)

or (M-1)p/(1l-p)<<1. This 1is not likely.

ik )((OL2 + BZ)Re{XiXk*} + (aB+a2) E'Re{XiXp* + XpXﬁ})coswdik]}=0

(All)




Appendix B. Separation of Terms, Diffuse Noise

In Eq. (A9) the double sum over r,t is broken into parts for (r,t) #
(i,k), (k,i) and (r,t) = (i,k), (k,1). Each part then has terms such as

ST Xqu*Npiqu +e 3y 7Y prq*NpkNiq
P q P q
wherein r and t replace i and k for the other part of (A9). The double sum
over p, q may further be broken down into parts for which p or q or both
are equal to i or k or both, each case giving different values for Npi or
qu. These give the following results, using 8 and a from (A2) and e+ and
e~ for the exponentials. (Similar results are obtained for the difference

of the conjugate exponentials, yielding sinwdik terms).
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Appendix C. Evaluation of FIM for Diffuse Noise,

An Independent Subset of M(M-1)/2 Delays 4
The following applies to any subset of M-1 independent delays dik'

To determine the FIM, we must calculate the expected values of ert*

using the noise matrix in (Al). This gives

S+ N r =t
<X X % ={ 1°
rt Se_dert + le, r#t (1)
We also note that (23) becomes for real N
P T {20%g8**cosd,, + 40?0 2s1n’0d . ) /g2
— ik ik
ad, 2 B+
ik T -1 -1
4+ XN~ A(m,n)N "X*} (C2)
The elements of A(m,n) = (amn) are (using (24)-(28) and real N)
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Now from (C2) we may expand
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T t t 3
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mnrt ¥
Applying (Cl), (C3) and (c4) to (C2) and using the separation-of- w
terms process in Appendix B gives for the diagonal elements of the FIM, ﬂ
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+ 207 (M-2) (S+N) + 2((M-2)" - (M-2)) N, + 2 ]} coswd_ )sinwd,, ]
1 [} [} Pq ik
2 22 ) P qQ->p
2w acoswd 8w a“si
+ ik + stnwdyy 33 [40B(S+N) ) cosud
g 2 (r,t)#(i,k)

& (k,1)

c2




+ 2(&2+BZ)QN1 coswdr + ZBZS + 2&28 cos der

t

t

2
+ 4(M-2)QN1(Q +0tB)coswdrt

2
+258 z' (chosw(drt—drq) +a cosw(drq+drt)

+ azcosw(drt—dtq) + chosw(drt+drq))
+ 2a2((M-2)(s+Nl) + 2(M-2)2 - (4-2)) o

Scoswdpq)coswdrt]} €5)

t

+27) )
p' q'>p

Some reduction in the number of terms may be obtained by gathering
coefficients of sines and cosines, but this will not be done here. Rather
the various terms are left for better inspection and identification with
their sources. However, let it be observed that the diagonal elements

(FIM)VV may be written

2 2
F. = -5 Y {20coswd,, + *% sinud,
g ik g i

vv B+ k

2 .2
2acoswdik + 80 sin"wd

2
. g g
_ (4a51nwdik ) A2(i,k)
g

+ (-1 +

ik) Al(i,k)

2 22 .2
2w acoswd,, . 8w o sinwd,, ) ) A3(r,t)} (c6)

g o2 (r,0)#(i,k), (k,1)

are as indicated in (C5). These will be used again in

+ (

where Al’ A2, and A3
the off-diagonal elements' expression.

The off-diagonals are found similarly.

Utilizing functions Al, AZ’ and A3 as in (C5) and (C4) the

off-diagonals are

2
= W 2 . .
(FIM)vw = - 2 . {4 o 31nwdik 51nwdrt/g
B+
2
+ 8a sinwdrt sinwdik Al(i,k)
2
g
+ 2a sinwdrt Az(i,k)

s & TR




C4

2 . )
+ 807sinwd  sinod,, A (r,t)

2
g
+ 2 @ sinad,, Ay (r,0)
g
8azsinwd sinwd
+ rt ik Y ) A3(m,n)} c?)
2 (m,n)#(i,k), (k,1)
& (r,t),(t,r)

A few remarks are in order at this point. The obvious feature is that
expressions (C6) and (C7) for the FIM elements are very complex; they are
functions not only of the delays whose covariance is sought but also of
all other delays. One simplification is to discard a2 and/or o- factor terms
with respect to 62 terms. Another is to consider the case where all delays
are equal to zero, For a zero delay vector, the covariances in (C7) are
also zero, the inversion of the FIM is considerably simplified, and the

diagonal elements of FIM and their inverses are functione of p,M,S and Nl only.

It is interesting that in this zero-delay situation the covariance
of two delays is zero. This differs from the ML estimation of the M-1
delays referred to a single sensor (see Eq. 7). Those delays have a non-
zero covariance with or without correlated noise. Mathematically the

difference is between 9 ( v VT ) and 3 (v v 8V V
Bdrt Td ad ad )

The second-order partial with double subscripted variables is zero, while
*
that with single subscripts is not. This is because the elements of V VT

are of the form exp(Jw(di-dk)) = exp(deik). For example if dl = di and

_ vyt ) 2 .
d2 = dk’ then 55— 67;;———— ) yields an element w exp(Jw(dl dz)) # 0, but
32 * T
———— (V V") = 0. Further, if p = O, then the off-diagonal elements of
a":lrt:adil-c

the FIM of the d are always zero. Evidently with spatially uncorrelated

ik

noise, ML estimates of the d are uncorrelated, although either the

ik
generalized cross-correlator measurements of dik which yield ML estimates
of the dj [3,4] or the ML estimates of the M-1 delays di are correlated,

as shown in Eqs. (13) and (7).
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